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The material in these notes was intially based on

@ C.P. Roberts: Bayesian Choice, Second Edition, Springer-Verlag,
Berlin , 2001.

Some auxuliary results required are quoted from
@ M.J. Schervish: Theory of Statistics , Springer-Verlag, Berlin , 1995.

An idiosyncracy of Roberts is that u - x may designate both the product of
real numbers u and x as well as the scalar product of vectors v and x.
Otherwise an effort has been made to unify the notation with the notes by
Henrik. In addition, Roberts prefers to write x for both outcome and
random variable.
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An idiosyncracy of Roberts is that u - x may designate both the product of
real numbers u and x as well as the scalar product of vectors v and x. In
addition, Roberts prefers to write x for both outcome and random variable.
Roberts deals with the natural exponential family to be introduced below.
Otherwise an effort has been made to accomodate to the notation with
the notes by Henrik.
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Parametric statistical model recalled

x is an observation of a random variable X, x € X (=sample space).
x ~ fxjo (x|0)

fxjo (x|0) is a probability density w.r.t. to a ¢ finite measure v on X'
fxje (x|0) is a known function of x and 6.
0 is an unknown parameter € () C a vector space of finite dimension.
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Exponential Families

The family of distributions pix|@ with densities w.r.t. to a o-finite measure
v on X defined by

d _
X0 (| 6) = fjo (x16) = C(B)h(x)eR eI T
is called an exponential family (of dimension k), where
@ C(0) and h(x) are measurable functions from () and X to R;,
@ R(f) and T(x) are measurable functions from ) and X to R*,

@ R(0) - T(x) is a scalar product in R*, i.e.,
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Exponential Families

@ The family of distributions 1ix|@ has densities w.r.t. to a o-finite
measure v on X, if for all 8 € ), Hxlo—g << V. If there is another
o-finite measure, say v such that for all 6, pxje—g << 17, then there
exists a representation as above. The dimension kK may depend on the
dominating measure.

o If 6 €Q), then pxje—g << pixj@—g, and the density of yx@—¢ W.r.t.
Hx|@=6, ON X is

dpix|e=0 (x| 6) = C(6) (rR(O)-R(60))-T(x)
dpx|@=0,

Hence, e.g., the family U (0,6),0 € () = (0, 00) cannot be an
exponential family.
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EXAMPLES OF EXPONENTIAL FAMILIES: Be(0)

Q = (0,1), v is the counting measurel.

fxjo (x|0) =6* - (1—0)"*. x=0,1
We write
fxjo (x|0) = C(0)eRO),
where

6

C(0) = €°81% T (x) = x, R(H) = log o

h(x) = 1.

1X= positive integers, v(A) = the number of elements in A ¢ X
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EXAMPLES OF EXPONENTIAL FAMILIES: N(u,0?)

x( = (x1,%2, .-+, %n), Xi LLD. ~ N(p,0?).

1 1 on ) 2
fX(”) ,0—2 — e_2‘7_22i:1(xl_]4)
) =

1 n;42 1

n 2, M
—n —5 —=5¥Y"  x?+1isnx
Ne™ 27 @~ 202 Limy Xj + 20X

B (271)"/20
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EXAMPLES OF EXPONENTIAL FAMILIES: N(u,0?)

QO =R x (0,00), v = Lebesgue measure on R". ,

1 R W R S R
f(X(n)|“I/l,0’2) - T o Me 2% mz,:lxl—&-;gnx'
(27-()”/2
np 1

C(0) = o "e 22, h(x) = T

RO T (x) = RO Ty (x) + Ra(O) T2 (x17)
() =B (<) o

1
Ri(60) = —5 3 Rel0) = 55
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SOME COMMON EXPONENTIAL FAMILIES

Poisson Po(6), Gamma Ga(p, 0), Binomial Bin(n, 6), Negative Binomial
Neg(m,8), Multinomial, Inverse Gaussian, Weibull (with known shape
parameter)
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Inverse Gaussian

>0, A>00<x<o0, 0= (uA)

A r”e o A p)?

) = | 5o s

The inverse Gaussian distribution is a two-parameter exponential family
with natural parameters —A/(2u2) and —A/2, and T1(X) = X and
To(X)=1/X.
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Natural Parameter, Natural parameter space

Clearly the density
fxjo (x | 8) = C(8)h(x)eRE T

depends only on
R = (R1(0),R2(0),...,Rk(9)).

We call R the natural parameter.

N =N®W):= {RGR"\/ dx)<oo}

N is called the natural parameter space, we assume that N' = Q).
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From Schervish p. 103:

If X has an exponential family distribution, then T (X) has an exponential
family distribution, and there exists a measure v such that

duTie

() = C(O)et

This will be discussed further in the lecture on sufficient statistics. A proof
is found on p. 17 in notes by Henrik.
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Natural Exponential Families (1)

Thus, ® C R and X C R, we can make a change of variable & relabel:
R(0) «<» 6 and T (x) < x.

fxjo (x | ) = C(0)h(x)e"™

and the family is said to be a natural exponential family . Here 6 - x is
inner product on R.
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Exponential Families: the natural parameter space

Thus

N) {ee Rk\/ <oo}

N = N (v) is called the natural parameter space, possibly = Q).
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The natural parameter space

N = {9\/Xh(x)e9'xv(dx) < oo}

@ An application of convexity of exp(-) yields that A\ is convex (as
shown below).

e WE ASSUME that A is an open set in R¥. Then we are dealing with
a regular exponential family?

20. Barndorff-Nielsen: Information and Exponential families in Statistical Theo
Wiley, 1978
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Natural Exponential Families (2)

1 0 o
m is a convex function.

Proof: 61 and 6, are two points in N and 0 < A < 1. Then, since the
exponential function is convex,

1
C(ABL + (1— AN)by)

:/ h(X)e()xfh—i—(l—)x)()g)-xv(dx)
X

1°X 2°X = 1 !
S/;vh(X) (Aee +(1—A)é )V(dx)_)‘c(gl)+(1_)\)C(92).
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Natural Exponential Families (3)

N is a convex set. I

Proof: 61 and 6, are two points in N and 0 < A < 1. Then —C(191) < 0

and % < 00, and since ﬁ is convex, we get that
)\91+(1—/\)92€N. (|
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Natural Exponential Families (4)

fxjo (x | 8) = h(x)e’>*~¥(®)

where

P (0) = —log C(0).

The function ¢ (0) is called the cumulant function.
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Natural Exponential Families (5)

Proposition
The moment generating function of a natural exponential family is

c(0)

M(u) = Ey [e"X} = ()
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Natural Exponential Families: Poisson Distribution

/\X
f(x|A)= ef’\F,x:O,l,Z...,

1
f (x| A) = S

1
_ 9 9 _ _
Y (0) =€, 0=logA h(x) = —
(o)

@ Moment generating function: M(u) = coTa
C(G) — e*¢(9) — e*eg _ e—/\’ C(9 + U) — e7¢(9+u) _ ei/\eu

le., M(u) = e et = Me"~1)
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Mean in a Natural Exponential Family

If Eg [X] denotes the mean (vector) of X ~ fx|@ (x|0) in a natural family,
then3
Ey [X] :/ xf (x| 0)dx = Ve (0).
X

where 0 € int(N) and X C Rk,
Proof:

/ xf (x| 0)dx = e_¢(9)/ h(x)xe?*dx.
X X

3V (0) = (53¢ (0), 339 (0),..., 59 (6)
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Mean in a Natural Exponential Family

It is permissible to interchange integration and derivation, Schervish Thm 2.64. )
105
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Mean in a Natural Exponential Family : Poisson

Distribution
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Uncertainty

Uncertainty about the unknown 6 is modeled by a probability distribution
7t (6), and 7g|x (6|x) expresses the uncertainty about the unknown 6
after the observation of x.

We use probability as tool for all parts of our analysis. This is coherence.
Mathematically: the unknown 6 becomes an outcome of a random
variable, i.e., (X, ®) will have a joint distribution. For the precise
formulation of this see the notes by Henrik.

25 /78
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Bayesian Parametric Statistical Model

A Bayesian parametric statistical model consists of

@ a parametric model
x ~ fxje (x]0)

@ a prior density (an improper density can be used)
0 ~ 7(0)
The quantity of interest: posterior distribution

Ox ~ 1o x (0|x) « fx|@ (x|0) - 7(0)
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Bayes' rule: parametric model

__ fxex]8)-7(6)
Jo fxjo (x| 8) -7 (6)do’

Te|X (8]x)

Terminology for Bayes' Rule:
o 71 (6) : prior density on (); here w.r.t. the Lebesgue measure.
o 7g|x (0]x) : posterior density on (), here w.r.t. the Lebesgue

measure.
o m(x) = [gfxje (x| 0) -7 (0) df : marginal distribution of x, also
known as the prior predictive distribution of x.
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Q: How do we choose 7t (6) ?

@ Assessment (by Questionnaries)
o Conjugate prior
@ Non-informative prior

o Laplace's prior
o Jeffreys’ prior

@ Maximum entropy prior
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Assessment of prior knowledge

(One form of) Bayesian statistics relies upon a personalistic theory of
probability for quantification of prior knowledge. In such a theory

@ probability measures the confidence that a particular individual (assessor)
has in the truth of a particular proposition

@ no attempt is made to specify which assessments are correct

@ personal probabilities should satisfy certain postulates of coherence.
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R.L.Winkler in

@ Robert L. Winkler: The Assessment of Prior Distributions in Bayesian
Analysis
Journal of the American Statistical Association, Vol. 62, No. 319. (Sep.,
1967), pp. 776-800.)

devises questionnaires (or interviews) to elicit information to write down a prior
distribution. Students of Univ. of Chigago were asked to, e.g., assess the
uncertainty about the probability of a randomly chosen student of Univ. of
Chigago being Roman Catholic using a probability distribution. The assessment
was done by four different methods, like giving fractiles, making bets, assessing
impact of additional data, drawing graphs. One interesting finding is that the
assessments by the same person using different methods may be conflicting.
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Diffuse /Non-diffuse prior distributions by assessment

The priors in Winkler's study are not diffuse: the students of Univ. of
Chigago have, since they have been around, an idea about the number of
Roman Catholics at the campus of of Univ. of Chigago.
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Choice of prior distributions by assessment: Eliciting

probabilities

More on this:

@ R.L. Keeney & D. von Winterfeldt: Eliciting Probabilities from
Experts in Complex Technical Problems. IEEE Transactions on
Engineering Management, Vol. 38, 1991, pp.191—-201.

@ K.M. Chaloner & G.T. Duncan: Assessment of a Beta Distribution:
PM Elicitation. The Statistician, 32, 1983, pp. 174—180

One more point =
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Assessing Priors: Conjugate Prior

The interviews of Winkler were mathematically speaking all concerned with
assessing the prior of 6 in a Bernoulli Be (8) — 1.1.D. process. Winkler claims a
sensitivity analysis (loc.cit p. 791) showing that the prior distributions assessed by
the interviews yielded posterior distributions that were ‘only little’ different (by a
test of goodness-of-fit) from those obtained from Beta densities on 0. Beta
densities are conjugate priors.

An intuitive way of understanding conjugate priors is that with conjugate
priors the prior knowledge can be translated into equivalent sample
information. A formal definition of conjugate priors follows.
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Conjugate Prior

Definition

Let F be a class of probability densities fxe (x | 0). A family of
probability distributions I1 on © is said to be conjugate or closed under
sampling for F, if for every prior 7t € 11, the posterior distribution

Te|x (8]x) also belongs to I1 for every f € F.

20.01.2010 34 /78
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Conjugate Family of Priors

A conjugate family is usually associated with a particular sampling
distribution that is even characteristic of conjugate priors: exponential
families.
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Conjugate Priors for Exponential Families: An Intuitive

Example

X(") = (xl,Xz,...,Xn). Xj ~ PO()\), ||D,

}\27:1)(/
(n) — e T
f (x | )\) e o
The likelihood is
L ()\;x(”)> o« e ML

This suggests the conjugate density as the density of the Gamma distribution,
which is of the form

T(A) o e PAret

and hence
s (/\|x(")) o e MBHN) \ KLy xi+a—1
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Conjugate Family of Priors for Exponential Families

Proposition
For the natural exponential family

o (x | 8) = h(x)e® ¥
the conjugate family? is given by
(0) = (0lp,A) = K (u, ) e+ 20

and the posterior is
PO +xA+1).

a(if this is a probabilty density, c.f. below)

20.01.2010
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Conjugate Priors for Exponential Families: Proof

Proof: By Bayes' rule
f(x|6)7(6)

T (O0) = == 5

We have
F (x| 0)7(0) = h(x)e** ¥y (6], \)

= h(x)K (i, A) e (x+1)=(1+A)p(6)
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Conjugate Priors for Exponential Families: Proof

m(x)z/@f(x|9)7r(9)d9:

= HOOK (1) [ -0 mge
C)

= h()K (4, A\) K (x+pu, A +1)"1,
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Conjugate Priors for Exponential Families: Proof

h(x)K (1, A) &0 (x+1)=(1+A)p(6)
h(x)K (1, A) K (x+u, A+ 1)1

7 (0)x) =

which shows that the posterior belongs to the same family as the prior and
that
(01x) =9 (0lp +x,A+1)

as claimed. O
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Conjugate Priors for Exponential Families

If A >0 and % € Int(N), then
m(0) =y (0lu,A) = K (u,A) e

is a probability density on ® (proof is an exercise for the reader), which is

presupposed in the proof above.
The parameters of the prior, A and y, are called hyperparameters.
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Mean for Exponential Families

We have the following properties:
o if 1(0) = K (xo,A) €%~ M) then

c<e>=/®Ee )7 (6) do = =2

This has been proved by Diaconis and Ylvisaker®. The proof is not
summarized here.

5P. Diaconis & D. Ylvisaker: Conjugate Priors for Expoenntial Families. The A
of Statistics, vol. 7, 1979, pp. 269—281.
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Posterior Means with Conjugate Priors for Exponential

Families

o if T (8) = K (u,A) e?#*¥0) then

+ nx
E /x(") do =
/@)9[X]7T<|x ) A-+n

This follows from the preceding, as shown by Diaconis and Ylvisaker
(1979). In fact Diaconis and Ylvisaker prove that this is a characterization
of conjugate priors for regular exponential families.

Timo Koski () Matematisk statistik 20.01.2010 43 /78



Mean of a Predictive Distribution
(n) — (n)
/@Eg[x]ﬂ(0|x )dG—/@/Xxf(x\H)v(dx)TC(mx ) do

(by Fubini's theorem

)
:/Xx/®f(x|9)7r<9|x(”)) d6v(d)

(by definition in lecture 1)

- / xg (xx(")v(dx)
X

the mean of the posterior predictive distribution (see the notes by Henrik
pp. 10—11).
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Mean of a Predictive Distribution

Hence if conjugate priors for exponential families are used, then

/Xxg(x|x(”))1/(dx) = Pj\‘:”:

is the mean of the corresponding predictive distribution. This suggests u
and A as 'virtual observations'.
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Laplace’s Prior

P.S. Laplace® formulated the principle of insufficient reason to choose a
prior as a uniform prior. There are drawbacks in this. Consider Laplace's

prior for 6 € [0, 1]
1 0<6<1
7 (0) = { 0 elsewhere,

Then consider
¢ = 0%

6http ://vwwu-groups.dcs.st-and.ac.uk/~history/Mathematicians/Laplace ;/html
20.01.2010
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Laplace’s Prior

We find the density of ¢ = 02, Take 0 < v < 1.

Vv
F¢(V)=P(4>SV)=P(9§W)=/O 7 (6) df

= /.
d d 11
fp(v) = EF(I,(V) == V==

which is no longer uniform. But how come we should have non-uniform
prior density for 82 when there is full ignorance about 6 ?

Timo Koski ()

Matematisk statistik 20.01.2010 47 / 78



Invariant Prior

We want to use a method (M) for choosing a prior density with the following
property:

If p = g (), g a monotone map, we have used the method (M) to find 7z, then
the density of ¢ given by the method (M) is

() =7 (670) - | goe W),

which is the standard probability calculus rule for change of variable in a
probability density.
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Invariant Prior: Jeffreys' Prior

We shall now describe one method (M), i.e., Jeffreys' prior.
In order to introduce Jeffreys' prior we need first to define Fisher

information, which will be needed even for purposes other than choice of
prior.
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Fisher Information of X

A parametric model x ~ f (x|0), where f (x|0) is differentiable w.r.t to
6 € R, we define I (0), Fisher information of x, as

1(0) = /X (W)z  (x16) v(dx)

Conditions for existence of / (6) are given in Schervish (1995), p. 111.
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Fisher Information of x: An Example

dlog £ (X|0) >
HO)=E |\ —355
Example:
- L te0Rra?
Fxl) = e '
o is known. dlogf (x|0) _ (x—6)
20 o o?
X — 2 2
l(6)=E[< ‘,49) ]:%:712
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Fisher Information of x, 8 € R

x ~ f (x|0), where f (x|) is differentiable w.r.t to 8 € R¥, we define
1 (0), Fisher information of x, as the matrix

1(0) = (I (9))f<Jk:1

dlog f (x|0) dlogf (x|0
1 (6) :Cove< ga(; %) gae‘ | >>
i j
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Fisher Information of x("

Same parametric model x; ~ f (x|0), I.I.D., x(n) = (X1, X2, .+, Xn)-
F(x™10) = £ (xal6) - £ (2l0) .. £ (xal0)

Fisher information of x(" is

L (0) = /X (W)z f (x(”)\e) v (dx(”))

=n-1(0).
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Fisher Information of x: another form

A parametric model x ~ f (x|6), where f (x|6) is twice differentiable w.r.t
to 0 € R. If we can write

%A(W)f&w)v(dﬂz
:/X%<alc’%0(x|9)>f(x|9)v(dx),

2 X
1(6) = —/X (%{N) f (x]0) v(dx)

then
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Fisher Information of x, 8 € R

x ~ f (x|0), where f (x|0) is differentiable w.r.t to 8 € R¥, then under
some conditions

k,k

o-[(a(35m))

ij=1
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Fisher Information of x: Natural Exponential Family

For a natural exponential family
f(x|8) = h(x)el*¥®

0?logf (x]|0) _821/J (9)
00;00;  90,00;

so no expectation needs to be computed to obtain /(6).
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Jeffreys' Prior defined

(6
t(0) := 7( )
Jo V/1(6)d6
assuming that the standardizing integral in the denominator exists.
Otherwise the prior is improper.
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Let ¢ = g (0), g a monotone map. The prior 77(6) is Jeffreys’ prior. Let us compute the prior density 7y (¢) for :

me(9) =7 (671 9) - G567 )]

.| Ep

3o 0)\?

(eefX2) } e )]
dlogf (Xlg 1) d ;1\’

) [( 2 P 1(‘”)

dlogf (Xlg~1 (v)
g1y [(T) } =V

Hence the prior for 1 is the JefFreys, prior.
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F = Binomial Distribution & IT =Conjugate Priors

We let ® be a random variable, whose values are denoted by 0,
Q = (0,1). We condition on ® = 6, and consider X, which is the sum of
n 1.1.D Be(f) R.V's. Hence for x =0,1,2,...,n,

f(x|) =P(X=x|0©=20)

:(}’Z)ex.u—e)H,

(the Binomial distribution)
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Any function 7t(-) such that
t(0) >0, 0<6<1,

T(0)=0 elsewhere,

and

can serve as prior distribution.
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Improper Prior Densities

Functions with the properties
t(0) >0, 0<60<1,

m(0)=0 elsewhere,

and L
/ 7t (0) dO = oo,
0

are also invoked as prior distributions, and are called improper priors.
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The Posterior Density

Bayes' rule

() — 1070

. 0<9<1
Jof(x16)-7(6)do

and zero elsewhere. The marginal distribution of x is

1
m(x) :/0 f(x|0)-m(0)de.
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The Posterior Density

Take 6 ~ U(0,1). i.e.,

1 0<6<1
() = { 0 elsewhere,
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The marginal distribution of X: uniform prior

()

where we used the Beta integral

()
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The Beta Density

T(@a+B) pa—171 _ g\B-1
7(6) :{ Morp?  (1—0F 0<6<1

0 elsewhere.

is a probability density Be(w, ).

! ! X — — () ( )
1 B-1 IlKI,E
/0 7‘[(0)d0—1¢>/00 (1-9) dp—r( )
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The Beta Integral

/ %=1 ( /3 lgp = F(a)r(,[%).

I(a+p)
Recall also that I'(x 4+ 1) = x!, if x is a positive integer. & = = 1 gives
the distribution U(0,1). We set

T'(a)T(B)
T(a+p)

The Jeffreys prior for Be(6) is Be(1/2,1/2) (i.e., a choice of
hyperparameters).

B(a,p):=
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The marginal distribution of X, 8 ~ U(0,1)

m(X):/Olf(XIG)-d0:<”>M

X (n+1)!
n! x(h—x)! 1
Cx!(n—=x)! (n+1)!  (n+1)
There is an interpretation of Bayes' work claiming that the problem really
attacked and solved by Bayes was: What should 77(6) be so that

1

1
/O fx10)-m(0)d0 = .

Chaloner and Duncan use predictive probabilities in this vein as the method
of predictive modal (PM) elicitation the hyperparameters in a Beta density.
K.M. Chaloner & G.T. Duncan: Assessment of a Beta Distribution: P gﬁ‘%t?z;,g
Elicitation. The Statistician, 32, 1983, pp. 174—180 St
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The Posterior Density

x!(n—x)!

A gk 1)k 0<h<1
0 elsewhere.
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The Posterior Density

(n+1)! T(n+2) B 1

x!(n—x)! T(x+DI(n—x+1) B(x+1l,n—x+1)
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The Posterior Density

Yt X (1-0)"F 0<0<1
7.[(9 | X) — B(x+1,n—x+1) ( ) =Y =
0 elsewhere.

This is again a Beta density.
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The Posterior Density 6 ~ Be(w, B)

1 L ox+a—1 _ p\Btn—x-1 < p<
(0| x)= B(x+a,n—x+pB) 0 (1-6) O=p=l
0 elsewhere.

This is Beta density Be(a + x, B+ n—x) .
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The Beta-binomial distribution

Let 7 (6) be the density of Be(a, ). Then for x =0,...,n

g(x) :/01< " >9X-(1—9)”X7r(9)d9

( n > I'(a+p) I'(x+a)'(n—x+p)
x ) T(a)T(B) I'(n+a+p)
_ < n > B(x+a,n—x+p)
X B(a, p)

is the Beta-binomial distribution.
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Kullback's Information Measure

Let f (x) and g (x) be two densities. Kullback's information measure
I (f;g) is defined as

I(f;g) = /Xf(x) Iog;g;v(dx).

We intertpret log @ =00, 0log0 = 0. It can be shown that / (f;g) > 0.

Kullback's Information Measure does not require the same kind of
conditions for existence as the Fisher information.
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Kullback's Information Measure: Two Normal

Distributions

Let f (x) and g (x) be densities for N (91;(72), N (92;(72), respectively.
Then
f(x) 1

g (x) T 202 {(X —62)" = (x - 91)2]

I(f;g) = 2%2591 [(x — 9,2 — (x — 91)2]

212 [Egl (x —6,)% — 02} .
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Kullback's Information Measure: Two Normal

Distributions

We have )
Ea, (x—62)2 = Eg, (XZ) — 20,69, (x) +63

=02 462 —20201 +63 = 0 + (61 — 62)°.
Then 1
7—2[ (61 — 6) 7‘7}:

1
=552 (61— 062).

I(f;g) = (61 — 62)°

1
202

Timo Koski () Matematisk statistik 20.01.2010 75/



Kullback’s Information Measure: Natural exponential

densities

Let f; (x) = h(x)e’ %) j=1,2. Then

I (fi;2) = (01— 02) - Voip (61) — (¢ (61) — 9 (62))
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Summary:

The fact that prior cannot be chosen uniquely is a serious objection to
Bayesian statistics. Clearly, conjugate priors are perhaps mainly preferred
for mathematical convenience. The question is, how much will the choice
of prior influence the statistical conclusions and decisions 7
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Robustness and Sensitivity

There are robustness and sensitivity analyses of the impact of choice of
prior on the posterior. Some of this (as known to the lecturer) requires
mathematical tools that are not readily presentable here.
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